Mesenchymal stem cell-mediated ectopic hematopoiesis alleviates aging-related phenotype in immunocompromised mice.

نویسندگان

  • Takayoshi Yamaza
  • Yasuo Miura
  • Kentaro Akiyama
  • Yanming Bi
  • Wataru Sonoyama
  • Stan Gronthos
  • Wanjun Chen
  • Anh Le
  • Songtao Shi
چکیده

Subcutaneous transplants of bone marrow mesenchymal stem cells (BMMSCs) are capable of generating ectopic bone and organizing functional hematopoietic marrow elements in animal models. Here we report that immunocompromised mice received subcutaneous BMMSC transplants using hydroxyapatite tricalcium phosphate as a carrier suppressed age-related degeneration in multiple organs and benefited an increase in life span extension compared with control littermates. The newly organized ectopic bone/marrow system restores active hematopoiesis via the erythropoietin receptor/signal transducer and activator of transcription 5 (Stat5) pathway. Furthermore, the BMMSC recipient mice showed elevated level of Klotho and suppression of insulin-like growth factor I signaling, which may be the mechanism contributing to the alleviation of aging-like phenotypes and prolongation of life in the treated mice. This work reveals that erythropoietin receptor/Stat5 pathway contributes to BMMSC-organized ectopic hematopoiesis, which may offer a treatment paradigm of reversing age-related degeneration of multiple organs in adult immunocompromised mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PPARγ2 Regulates a Molecular Signature of Marrow Mesenchymal Stem Cells

Bone formation and hematopoiesis are anatomically juxtaposed and share common regulatory mechanisms. Bone marrow mesenchymal stromal/stem cells (MSC) contain a compartment that provides progeny with bone forming osteoblasts and fat laden adipocytes as well as fibroblasts, chondrocytes, and muscle cells. In addition, marrow MSC provide an environment for support of hematopoiesis, including the d...

متن کامل

Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration

Aging and obesity induce ectopic adipocyte accumulation in bone marrow cavities. This process is thought to impair osteogenic and hematopoietic regeneration. Here we specify the cellular identities of the adipogenic and osteogenic lineages of the bone. While aging impairs the osteogenic lineage, high-fat diet feeding activates expansion of the adipogenic lineage, an effect that is significantly...

متن کامل

Enhancing Ectopic Bone Formation in Canine Masseter Muscle by Loading Mesenchymal Stem Cells onto Natural Bovine Bone Minerals.

Objectives- To assess the ectopic bone formation in canine masseter muscle following the implantation of the natural bovine bone minerals (NBM) loaded with canine mesenchymal stem cells (MSCs).Design- Experimental study.Animals- four mongrel dogs.Procedures- Tripotent MSCs isolated from the canine bone marrow were loaded onto the NBM sponges and allowed to adhere. The cell-loaded scaffolds were...

متن کامل

Long-term functional engraftment of mesenchymal progenitor cells in a mouse model of accelerated aging.

Age-related osteoporosis is characterized by a decrease in bone-forming capacity mediated by defects in the number and function of osteoblasts. An important cellular mechanism that may in part explain osteoblast dysfunction that occurs with aging is senescence of mesenchymal progenitor cells (MPCs). In the telomere-based Wrn(-/-) Terc(-/-) model of accelerated aging, the osteoporotic phenotype ...

متن کامل

Ectopic expression of telomerase enhances osteopontin and osteocalcin expression during osteogenic differentiation of human mesenchymal stem cells from elder donors

Age related bone loss is one of the most prevalent diseases in the elder population. The osteoblasts are the effectors cells of bone formation and regeneration. With the aging the osteoblasts become senescent reducing their ability to produce bone. Cellular replicative senescence is triggered by telomers shortening. Telomerase elongate the telomers length and maintain the cell proliferative cap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 113 11  شماره 

صفحات  -

تاریخ انتشار 2009